Aalto-yliopiston tutkijat loivat täysin uudenlaisen kvanttitilan

Tutkijat yhdistivät kaksi äärimmäisen ohutta materiaalikerrosta ja havaitsivat kvanttilomittuneen tilan, jossa elektronit käyttäytyivät samoin kuin harvinaisissa maametalliyhdisteissä.

Aalto-yliopiston tutkijat ovat onnistuneet ensimmäisinä maailmassa yhdistämään kaksi äärimmäisen ohutta tantaalidisulfidikerrosta niin, että elektronit käyttäytyivät syntyneessä kvanttitilassa tavalla, joka on aikaisemmin vaatinut harvinaisia maametallien yhdisteitä.

Uuden materiaalin valmistusprosessi on tutkijoiden mukaan kohtuullisen helppo.

Materiaali voi soveltua kvanttilaskentaan. Se voi myös edistää epätavanomaisen suprajohtavuuden ja kvanttikriittisyyden eli materiaalien yhdestä kvanttitilasta toiseen siirtymisen tutkimusta.

Tutkimustulokset julkaisi Nature-lehti.

Saarekkeille syntyi erikoinen ilmiö

Tutkijoiden alkuperäinen tavoite oli luoda kvanttispinneste, jonka avulla he voisivat tutkia uudenlaisia kvantti-ilmiöitä. Kvanttispinneste käyttäytyy magneettisen nesteen tavoin, mutta se ei jähmety tai järjestäydy edes absoluuttisessa nollapisteessä.

Kokeessa käytetty tantaalidisulfidi on siirtymämetallidikalkogenideihin kuuluva materiaali, jolla on useita eri kidemuotoja.

Yhden atomikerroksen paksuinen tantalumdisulfidi voi olla joko kvanttispinneste tai suprajohde, joka tarkoittaa, että sähkö pääsee kulkemaan täysin ilman vastusta.

Valmistusprosessissa syntyy sekä yhden että kahden atomikerroksen paksuisia saarekkeita, joissa on molempia kidemuotoja.

Kun tutkijat tarkastelivat kahden atomikerroksen paksuisia saarekkeita, he havaitsivat kerrosten välissä ilmiön, jota kutsutaan Kondo-tilaksi.

Kondo-ilmiö syntyy magneettisten epäpuhtauksien ja elektronien välisestä vuorovaikutuksesta, joka johtaa siihen, että materiaalin sähkövastus muuttuu lämpötilan muuttuessa.

Vuorovaikutus saa myös elektronit käyttäytymään kuin niillä olisi enemmän massaa kuin niillä todellisuudessa on. Siksi yhdisteitä kutsutaan raskaiksi fermionimateriaaleiksi.

Ilmiö on aikaisemmin ollut mahdollinen vain harvinaisia maametalleja sisältävissä yhdisteissä.

Raskaasta fermionimateriaalista hyötyä elektroniikassa

Raskaat fermionimateriaalit ovat tärkeitä esimerkiksi uusien kvanttimateriaalien luomisessa.

”Monimutkaisten kvanttimateriaalien tutkimista hidastaa se, että niitä on vaikea löytää luonnossa ilmenevistä yhdisteistä”, sanoo professori Peter Liljeroth.

Ryhmän tavoitteena on hänen mukaansa luoda keinotekoisia materiaaleja, joita voi helposti muunnella ja hallita ulkoisesti.

”Näin voimme havaita eksoottisia ilmiöitä tehokkaammin laboratoriossa.”

Raskaissa fermionimateriaaleissa voidaan saada aikaan esimerkiksi topologista suprajohtavuutta. Se voi auttaa rakentamaan paremmin ympäristön häiriöitä kestäviä kubitteja, mikä vähentää virheitä ja kvantti-informaation haihtumista kvanttitietokoneiden kubiteista.

”Keinotekoinen raskas fermionimateriaali, jota voisi hallita vaikkapa ulkoisella sähkökentällä, olisi hyödyllinen esimerkiksi elektronisissa laitteissa”, kertoo tohtorikoulutettava Viliam Vaňo.

Tantaalidisulfidin erilaiset kerrokset

Vaikka kerrokset ovat samaa tantaalidisulfidia, niiden ominaisuudet poikkeavat aavistuksen toisistaan.

Yksi kerros käyttäytyy kuten metalli ja johtaa elektroneja, kun taas toisessa kerroksessa on rakenteellinen muutos, joka johtaa siihen, että elektronit pysyvät säännönmukaisessa hilassa.

Kun kerrokset yhdistetään, lopputulokseksi saadaan materiaali, jonka ominaisuudet poikkeavat kummastakin siihen yhdistetystä kerroksesta – ja joka käyttäytyy raskaiden fermionimateriaalien tavoin.

Uutta raskasta fermionimateriaalia voidaan hyödyntää myös kvanttikriittisyyden tutkimisessa.

”Materiaali siirtyy kvanttikriittiseen pisteeseen, kun se lähtee siirtymään kvanttitilasta toiseen, esimerkiksi tavallisesta magneetista kohti raskaita fermionimateriaaleja vastaavia ominaisuuksia”, kertoo professori Jose Lado.

”Näiden tilojen välissä koko järjestelmä on epävakaa ja reagoi voimakkaasti pieneenkin muutokseen. Se mahdollistaa vieläkin eksoottisempien kvanttimateriaalien tutkimisen.”

Kuvia atomitason tarkkuudella

Aallon tutkijat käyttivät materiaalien tutkimiseen tunnelointimikroskooppia, joka ottaa atomitason kuvia sekä mahdollistaa materiaalien sähköisten ominaisuuksien tutkimisen atomitasolla.

”Jatkossa voimme tutkia materiaalikerrosten kiertämistä suhteessa toisiinsa ja yrittää kytkeä kerroksia toisiinsa eri tavoin, jotta saamme materiaalin siirtymään kohti kvanttikriittistä tilaa”, Peter Liljeroth sanoo.

(Kuva Heikka Valja) Taiteellinen näkemys kvanttilomittuneesta tilasta.

Kerro meille mielipiteesi!

 

Anna palautetta

Lisää uutisia